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Abstract

In single-case experimental design (SCED) research, researchers often choose when to

start treatment based on whether the baseline data collected so far are stable, using

what is called a response-guided design. There is evidence that response-guided designs

are common, and researchers have described a variety of criteria for assessing stability.

With many of these criteria, making judgments about stability could yield data with

limited variability, which may have consequences for statistical inference and effect size

estimates. However, little research has examined the impact of response-guided design

on the resulting data. Drawing on both applied and methodological research, we

describe several algorithms as models for response-guided design. We use simulation

methods to assess how using a response-guided design impacts the baseline data pattern.

The simulations generate baseline data in the form of frequency counts, a common type

of outcome in SCEDs. Most of the response-guided algorithms we identified lead to

baselines with approximately unbiased mean levels, but nearly all of them lead to

underestimates in the baseline variance. We discuss implications for the use of

response-guided designs in practice and for the plausibility of specific algorithms as

representations of actual research practice.

Keywords: single-case experimental designs, response-guided designs, behavioral

observation
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The impact of response-guided designs on count outcomes in single-case experimental

design baselines

Single-case experimental designs (SCEDs) are an important tool for evaluating

interventions developed for use with low-incidence populations, and are applied in fields

such as communication disorders, rehabilitation, special education, and clinical and

school psychology. Several types of SCEDs have been described (Ledford & Gast, 2018),

all of which have in common the repeated measurement of an outcome over time on an

individual case. In many types of SCEDs, measurements are organized in phases,

beginning with a baseline phase to establish an initial pattern of responding, followed by

a phase where the intervention is introduced. In multiple-baseline designs, the baseline

and treatment phases are replicated across multiple cases, each beginning intervention

at a different point in time, while in treatment reversal designs, the intervention phase is

followed by a return-to-baseline and re-introduction of intervention(Gast, Ledford, &

Severini, 2018; Gast, Lloyd, & Ledford, 2018).

In implementing an SCED involving baseline and intervention phases, the

researcher must determine when to begin the intervention phase. Although

methodologists have argued for using randomization procedures to determine phase

change points (Kratochwill & Levin, 2010; Todman & Dugard, 1999), applied single-case

researchers have questioned the value of randomized designs, and the approach remains

uncommon in practice (Ledford, 2018; Wolery, 2013). More commonly, researchers graph

the outcome data after every measurement occasion and determine when to change

phases based on inspecting the data pattern—an approach termed response-guided

experimentation (for the origin of this terminology, see Edgington, 1983).

A response-guided design involves making inferences about certain features of the

data (Gast, 2014). These inferences are not summary inferences about the effectiveness

of an intervention, but rather are judgments about patterns in the data that drive

decisions about the timing of implementing an intervention. Typically, the analyst is
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concerned with “stability” in the current phase for any or all participants, where

stability means that the baseline data are (a) not too variable and (b) not trending in

the expected direction of the effect (Barton, Lloyd, Spriggs, & Gast, 2018; Joo, Ferron,

Beretvas, Moeyaert, & Van den Noortgate, 2017; Kazdin, 1982; Kratochwill, Levin,

Horner, & Swodoba, 2014). Ensuring stability is desirable for visual analysis because

low variability makes it easier to discern whether an intervention has an impact on the

average level of an outcome. Ensuring that there is no trend in baseline is desirable

because a baseline trend (particularly a trend in the direction of therapeutic

improvement) makes it difficult to visually distinguish between a projected natural

change and change due to introducing the intervention.

Although visual inspection is the traditional method of drawing summary

inferences from SCEDs, the past several decades have seen growing interest in other

methods of analysis—particularly methods for meta-analysis of SCEDs (e.g., Allison &

Gorman, 1993; Center, Skiba, & Casey, 1985; Moeyaert, Ferron, Beretvas, & Van den

Noortgate, 2014; Van den Noortgate & Onghena, 2003). Pustejovsky and Ferron (2017)

described a number of benefits to the meta-analysis of SCED data. First, meta-analysis

can provide a basis for drawing broader generalizations about intervention impacts than

what can be supported by individual SCED studies, which are usually small and

case-specific. Second, meta-analysis provides a way to measure the consistency or

heterogeneity of intervention effects and to examine moderating factors that could

explain why treatments work in some cases but not others. Third, meta-analyses can

also provide insights into methodological practices, either by bringing to light issues in

empirical findings or by examining how well the available research conforms to

methodological standards and best practices.

Alongside interest in meta-analysis of SCED data, there has also been an interest

in the application of statistical methods to individual cases or studies. Statistical

methods for individual studies can provide a complement to visual analysis methods



THE IMPACT OF RESPONSE-GUIDED DESIGNS 5

because the latter method does not provide a clear means of estimating the magnitude

of the effect, but only of assessing whether or not a change in the outcome is related to

the intervention (Kratochwill et al., 2014).

Despite recent interest in statistical analysis and meta-analysis of SCED data and

a rapidly expanding array of new methods (Manolov & Moeyaert, 2017), there has been

little consideration of how response-guided design practices might impact results of

statistical analysis. All of the existing statistical methods that we are aware of treat the

length of baseline and intervention phases as fixed aspects of the study’s design, yet

response-guided design practices would suggest that phase lengths are determined

dynamically from the data pattern. Furthermore, response-guided designs might lead to

restricted variability in the outcome data, with consequences for estimates and

inferences from statistical analysis. Specifically, if the variability of the sample data is

restricted with respect to the population process, the use of a response-guided design

might affect the properties of effect size estimates that use the sample standard

deviation, as well as standard errors and confidence intervals that characterize the

degree of uncertainty in estimates.

Studying the impact of response-guided designs on SCEDs is difficult because we

need precise operational definitions of how researchers make decisions about when to

transition between phases. Researchers who use response-guided design practices

typically do not precisely describe how they make phase change decisions, and in fact

may not even report whether they used response-guided design practices at all. In a

review of 101 multiple-baseline SCEDs published between 1998 and 2001, Ferron and

Jones (2006) found that as many as 80% of the studies may have been response-guided,

but only 31% of the studies were explicitly described as response-guided.

However, there is some guidance in applied textbooks (e.g., Gast & Spriggs, 2014;

Kazdin, 1982) and the scant methodological research on the impact of response-guided

designs on SCEDs (Ferron, Joo, & Levin, 2017; Joo et al., 2017) that we can use to make
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some educated guesses about appropriate operational definitions for response-guided

designs. We propose the use Monte Carlo simulations to mimic some of the

response-guided design practices used by researchers and thereby to assess their impact.

Monte Carlo simulations

One of the main available tools for studying the properties of statistical methods is

Monte Carlo simulation. In a Monte Carlo simulation, the researcher generates many

random samples of artificial data, based on a fully specified statistical model for the

population. The researcher then applies a statistical method to each of the samples and

compares the results to the known true parameters of the population model (in contrast,

when applying statistical methods to real data, the absolute truth of the population is

never known with certainty). Methodologists often use Monte Carlo simulations as part

of developing and validating new statistical estimation methods or in evaluating

competing methods (Morris, White, & Crowther, 2019). The methods are especially

useful for studying the properties of statistical methods when their assumptions are

violated—a situation where it is difficult to derive properties using theory alone.

Response-guided designs may represent subtle violations of the assumption of

independence or the assumed distributions of the outcomes, and so the use of simulation

methods is an appropriate way to explore their impacts.

In order for simulations to provide meaningful findings regarding the properties of

a method (such as response-guided design), the model underlying the simulations must

be credible. Many simulations in educational and social science research assume that

data are normally distributed. However, outcomes in real SCEDs are frequently reported

as counts, rates of behavior, or proportions of time (Pustejovsky, Swan, & English, 2019;

Shadish & Sullivan, 2011). Typical models for counts or proportions (such as the

Poisson or binomial distributions) involve a connection between the mean level and

variability of the outcomes, whereas models based on normal distributions usually do

not involve mean-variance relationships. Because the variance of the outcomes is a key
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feature of many response-guided design approaches, it is important for simulations of

such practices to consider models that involve different mean-variance relationships.

Study Aims

In this study, we draw on both methodological and applied texts as guidance for

designing algorithms to mimic response-guided methods. Using Monte Carlo simulation,

we examine how the use of these hypothetical methods affects the features of SCED

data. The algorithms we designed use two sets of criteria drawn from Kazdin (1982) (a

classic and influential practitioner text), four sets of criteria from Gast and Spriggs

(2014) (a modern practitioner text), and the virtual visual analyst developed by Ferron

et al. (2017) and Joo et al. (2017). To our knowledge, Ferron et al. (2017) and Joo et al.

(2017) are the only previous studies to examine response-guided designs in the context

of statistical models. These studies proposed and studied one method for simulating a

response-guided design using normally-distributed data. The present study builds on

Ferron et al. and Joo et al. by examining multiple potential response-guided design

algorithms and by simulating count outcome data. The first contribution is important

because, in practice, it is likely that researchers use an array of response-guided design

practices other than the virtual visual analyst algorithm proposed in Ferron et al.

(2017). The second contribution is important because normal distributions may not be a

good representation of the types of data often collected in SCEDs.

The present study is motivated by two research questions:

• What are the distributions of stable baseline phase lengths from different

response-guided algorithms?

In practice, SCEDs often involve short baseline phases. A review by Pustejovsky and

colleagues (2019) found a mean baseline length of 11 observations, with a median of 7,

indicative of a distribution made up of short baselines and a small number of much

longer baselines. If the baselines that result from a particular algorithm are generally
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very long, this suggests that the algorithm might be unrealistic for practical use.

Researchers are unlikely to apply criteria that never allow them to move to intervention

phases. Additionally, algorithms for which all baselines reach stability are potentially

not very discriminating in terms of the "stability" of the data, although it is likely that

some researchers prefer rules that are minimally discriminating. Information about the

average baseline lengths, the proportion of baselines that are found stable in reasonable

number of observations, and combined discriminating power may also be useful to

applied researchers for deciding on the sort of criteria they may want to use in their

response-guided designs.

• To what degree does the use of response-guided algorithms create systematic bias

in the mean level or variability of sample baselines?

SCED researchers may be interested in using response-guided design practices that

produce data which are amenable to statistical analysis in addition to traditional visual

analyses, and researchers interested in the secondary analysis of SCED data will want

unbiased estimates of treatment effects. It is therefore important to know whether using

response-guided design practices creates systematic biases. Biases in the mean level can

impact treatment effect estimates, and biases in the variability can impact standardized

treatment effect estimates, standard errors, as well as the weights for effect sizes in

meta-analysis.

There are a variety of SCED designs (treatment reversals, multiple baselines, etc.)

and potential post-treatment trajectories (immediate treatment effects, linear trends,

non-linear trends) that could be studied through simulation, and each of these design

and post-treatment trajectory combinations represent a potential study on their own. In

this study, we focus on simulated count data from SCED baselines without any time

trend (i.e., no systematic pattern of decreasing or increasing values). This simple

scenario is a useful starting point because it presents favorable conditions for conducting

an SCED and using statistical analysis. Thus, this scenario can provide some insight
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into the impact of response-guided designs on the results of statistical methods applied

to SCEDs. We should note, however, that the scenarios we examine all assume that the

true data generating process has a stable level. Consequently, we do not examine the

performance of the algorithms in detecting baseline instability, leaving such questions for

further research.

Methods

In what follows, the response-guided algorithms and data generating models are

described in greater detail, the conditions under which we generated the simulated

SCED baselines are explained, and the performance criteria we used to evaluate the

simulations are described.

Response-guided algorithms

Kazdin (1982) noted that there was no agreed-upon method for determining

stability in SCEDs. He identified some empirical examples to demonstrate possible

methods for determining stability, and we followed these examples to define two

response-guided algorithms. Drawing on the example of Wilson, Robertson, Herlong,

and Haynes (1979), we considered a series stable if the last three observations in the

series were within ±5% of the mean of the full series. We called this the Kazdin 10%

rule, abbreviated as Kaz10. Drawing on the example of Scott et al. (1973), we

considered a series stable if the last three observations in the series were within ±7.5% of

the mean of the full series. We called this the Kazdin 15% rule, abbreviated as Kaz15.

We based our next set of algorithms on Gast and Spriggs (2014). Between the

time that we performed this research and the results were published, a newer version of

this chapter (Barton et al., 2018) was published in Ledford and Gast (2018). Any

updates to the text are not accounted for in our algorithms, although we intend that our

future research in this area will take any substantial changes into consideration.

Gast and Spriggs (2014) described a number of ways to characterize stability in

SCEDs. Although not explicitly framed as rules for transitioning between phases, we
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used their descriptions as guidelines for other ways a researcher might decide a baseline

is stable. They describe four methods of detecting “level” stability, or stability when

there is no trend in the data, all of which are defined in terms of a horizontal envelope

or bandwidth. The authors describe bandwidths as large as 25% of the median being

appropriate with a small amount of data, and bandwidths as small as 10% of the

median being appropriate for a large amount of data. To make this method fully

operational, we used examples described by Gast and Spriggs (2014) as guidance. Let w

denote the width of the envelope used to determine stability. We assume that the

stability envelope width w is determined by the number of observations in baseline up to

that point, denoted as nb, and by the median of the baseline data up to that point,

denoted m̃b. Specifically, we set w equal to 25% of m̃b when nb is less than or equal to 5

and equal to 10% of m̃b when nb is greater than or equal to 20; for intermediate values,

we assume that w decreases linearly by 1% of mb for each additional observation

between 5 and 20. Figure 1 displays the stability envelope visually.

For the first method, full-series baseline stability (GSFull), we considered a

baseline stable when at least 80% of the observations in a series are within a horizontal

envelope (called the ”80%/20%” rule in the text). For the following three rules, no

explicit guidance was provided by the authors on what was considered an appropriate

width, so we approximated appropriate widths based on the spread implied by the

80%/20% rule. For the second method (GSFinal), we considered a baseline stable if all

of the final three observations are within a horizontal envelope of width w. For the third

method, termed “absolute stability” by the authors (GSAbs), we considered a baseline

stable if the absolute value of the difference between the first and last data point was

less than 2w. For the fourth method, termed “relative stability” by the authors

(GSRel), we considered a series stable if the absolute difference between the median of

the data from the first half of the baseline and the median of the data from the second

half of the baseline (excluding the middle point for an odd number of observations) was
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less than 2w.

Gast and Spriggs (2014) also advised assessing trend using a freehand or

split-middle line, using the same bandwidth as the 80%/20% rule around the line. We

focused on the split-middle line because it can readily be automated. In conjunction

with the level stability criteria described above, we assumed that a baseline series would

be considered stable if the slope of the split-middle line is contra-therapeutic and 80% or

more of the points in the baseline are within an envelope of a width w around the

split-middle line. Drawing on general advice from Gast and Spriggs (2014), we also

required that any therapeutic trend must be smaller than 1.5w/nb. This ensured that

small level changes that would be considered acceptable to visual analysts would not

cause the algorithm to keep collecting data, while also ensuring that a baseline would

not end with a therapeutic trend.

For the final method, we drew on the methodological literature and implemented

the virtual visual analyst for baseline stability (VVA), as described in Joo et al. (2017).

The authors developed the virtual visual analyst to mimic human judgment about

whether and when to extend a phase within a single-case experimental design, so that

they could study the performance of inferential procedures such as masked visual

analysis using Monte Carlo simulation. They provided precise operational definitions,

allowing us to match their proposed algorithm exactly. This version of the algorithm

assumes that the therapeutic direction of treatment is an increase in the behavior. Let

sb denote the standard deviation of the baseline observations collected thus far. We

considered the baseline stable if all of the following conditions were met:

1. the ordinary least squares (OLS) regression slope of baseline observations is less

than 0.5sb,

2. the OLS slope of the final three baseline observations is less than 0.5sb,

3. the difference between the last observation in the baseline and the mean of the
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entire baseline is less than 2sb, and

4. the difference between the mean of the last half of the baseline observations and

the mean of the first half of the baseline observations is less than 1.5sb.

Careful examination of the algorithms suggests that response-guided design

practices from practitioner texts are generally geared toward assessing the change in

level, degree of variability, and sometimes trend in the direction of the expected effect.

The stability rules from Gast and Spriggs (2014) appear to be refinements on the ones

described by Kazdin (1982). Because they are defined in terms of the median rather

than the mean, the algorithms from Gast and Spriggs (2014) will not be affected by

outlying values to the same degree as those from Kazdin (1982). The algorithms from

practitioner texts come at the issue of stability from the perspective of a visual analyst,

and therefore are defined in terms that can easily be calculated from plotted data. The

VVA comes at stability from the perspective of a quantitative analyst, who assumes that

the spread in the sample is representative of the generating process, and who is

concerned with avoiding therapeutic trends in the baseline and large changes in level

between the beginning and end of the baseline.

Finally, these rules for stability are likely only useful in contexts where the

outcome measure has an absolute zero. Measures such as counts (which our study

focuses on) or rates have meaningful zeros, but other measures used in SCEDs may not.

Data Generating Models

To investigate the consequences of response-guided designs for baseline data

patterns, we simulated artificial baseline phase data based on three distinct data

generating models: an auto-correlated Poisson distribution, a gamma point process, and

a normal (Gaussian) distribution.

Auto-correlation, where the value of a given observation depends upon one or more

of the previous observations, is a common concern in SCED data (Shadish & Sullivan,
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2011), and adequately accounting for it in statistical models is an ongoing area of

research in SCED methods (Shadish, 2014). In light of these concerns, we first examined

a model that generated auto-correlated observations: an auto-correlated Poisson

distribution. This model generates count outcomes, similar to the type of data that

would be generated using a frequency counting procedure for systematic direct

observation of a behavior. Taken individually, each observation follows a Poisson

distribution, which is a common model for count outcomes (Fox, 2008). The model

introduces auto-correlation using a method called binomial thinning (McKenzie, 1988).

Binomial thinning generates dependent observations by summing an independent

Poisson draw with a draw from a binomial distribution, where the parameters of the

binomial distribution are determined by previous observations. We assumed that the

data followed a first-order auto-regressive structure, where the correlation between an

observation at time s and an observation at time t is ρ|t−s|.

The second model was a gamma point process (Rogosa & Ghandour, 1991), which

also produces count outcomes. Briefly, the gamma point process is a model for the

number of behaviors ("points") observed in a specified time period, where each instance

of behavior is instantaneous and the waiting times between behaviors follow a gamma

distribution. We used this model in order to examine the consequences of different

degrees of variability (or dispersion) in the outcome data, in the absence of

auto-correlation. Whereas Poisson-distributed data have a variance that is exactly equal

to its mean, data produced by the gamma point process have a variance that is

approximately proportional, but not equal, to its mean. With a gamma point process,

the variance of an observation may be larger than its mean (over-dispersion) or smaller

than its mean (under-dispersion). This is roughly equivalent to what is called the

quasi-Poisson mean-variance relationship used in generalized linear models (McCullagh

& Nelder, 1989). The problem of over- or under-dispersed data is common enough that

some texts suggest using the quasi-Poisson mean-variance relationship as a matter of
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course when modeling count outcomes (Fox, 2008). The inspection of count data from

SCEDs has also shown evidence of over- and under-dispersion (Pustejovsky et al., 2019).

In the simulations, we generate baseline data with a specified mean, µ, and relative

dispersion κ 6= 0, so that the variance of each observation is κµ. Values of κ less than 1

correspond to under-dispersion, while κ larger than 1 corresponds to over-dispersion.

When κ = 1, the gamma point process is equivalent to a Poisson distribution (without

auto-correlation).

The third and final model was a traditional normal distribution, with and without

autocorrelation. We generated normally-distributed data in order to look for

discrepancies between normally-distributed model and the other count models, and to

link our results to the existing methodological literature that has largely focused on the

normal distributions for generating outcome data.

Simulation Conditions

We conducted the simulations using the R statistical computing environment (R

Core Team, 2020). Table 1 displays the simulation conditions for each of the data

generating processes. For each data generating process, all conditions were crossed.

Because the Poisson closely approximates a normal distribution when the counts are

high-incidence (Johnson, Kemp, & Kotz, 2005), we focused on counts with lower

incidence, with mean levels no greater than 25. For the binomial thinning model, 0.2 is

the mean level of autocorrelation found by Shadish and Sullivan (2011) in their review,

and 0.4 is one standard deviation above the mean. We created functions to generate

data according to the binomial thinning model.

For the gamma point process, we selected dispersion levels based on an empirical

analysis of baseline data from seven published systematic reviews of SCEDs

(Pustejovsky et al., 2019). We omitted the case with kappa = 1 because it is

mathematically equivalent to a Poisson distribution with zero auto-correlation, and so is

redundant with the first simulation. We used the ARPobservation package
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(Pustejovsky, 2018) to generate this data.

We generated normally-distributed data with a mean of 5, with variances of 0.25,

1, and 2.25 (corresponding to standard deviations of 0.5, 1, and 1.5). We chose a mean

of 5 for two reasons. The first reason is that we use relative bias as a performance

criteria, and we needed to use a value other than zero for the mean baseline in order to

avoid dividing by zero. Additionally, we wanted to avoid simulating observations less

than zero, which is clearly not possible for counts. The autocorrelation values were

chosen using the same logic as the binomial thinning simulation conditions. We used the

R function ‘arima.sim‘ to generate normally-distributed data with first-order

auto-correlation, and the R function ‘rnorm‘ to generate uncorrelated

normally-distributed data.

For each data generating model and each combination of conditions, we simulated

data from 5000 baseline phases, each 100 observations in length. We then analyzed the

stability of each simulated baseline data series. Specifically, for each of the algorithms

that we have described, we found the minimum phase length where the data series met

stability criteria, up to a maximum length of 100 observations. Based on the reported

characteristics of empirical SCED data (Pustejovsky et al., 2019), baselines longer than

100 observations are very unlikely in real data. Within each set of conditions and

algorithm, we tracked the total number of observations that were found stable at any

point between 3 and 100 observations, inclusive.

For the subset of simulated baseline data series that met stability criteria, we

calculated the relative bias of the baseline level and baseline variance for each

combination of data generating model, conditions, and algorithm. If the true value of a

parameter is θ and its estimate is θ̂, relative bias is defined as E
(
θ̂ − θ

)
/θ. Following

the guidelines suggested by (Hoogland & Boomsma, 1998), we indicate sets of conditions

that exceed ±5% of the relative bias, because biases of that magnitude may be of

particular concern. In total, this simulation had 3× 3 + 3× 4 + 3 = 24 sets of
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conditions. Code for replicating all of the simulations is available (Swan, Pustejovsky, &

Beretvas, 2020).

Results

We present the results of the simulation regarding, in turn, the distributions of the

baselines, the bias of the baseline mean, and the bias of the baseline variance. Although

methodological studies typically describe any biases before considering other

performance criteria, we believe that the typical phase lengths which are the result of

using these algorithms may be of the most interest to applied SCED researchers.

Distributions of the baselines

For this section, we focused primarily on the baselines that reached stability

within the first 20 observations. This range provided the clearest evidence of the

differences between algorithms, and we believe that most applied researchers are likely

to be interested in baselines of fewer than 20 observations. For most of the

response-guided design algorithms, any baseline that would eventually be considered

stable was usually stable prior to 20 observations, except for the two Kazdin algorithms.

Figure 2 displays the cumulative percentage of stable baselines at a given

observation length up to 20 observations for the independent Poisson data. The value at

x = 3 is the percentage of stable baselines at three observations, the value at x = 4 is

the percentage of stable baselines at three observations plus the percentage of stable

baselines at four observations, and so on. Generally speaking, higher values of the mean

led to larger percentages of the baselines that were eventually considered stable. When

the generating baseline mean was low (a mean of five observations per session),

relatively few data series achieved stability according to the Kaz10, Kaz15, or GSFull

algorithms—between 10% and 20% of baselines by 20 observations. As the generating

mean increased, the fraction of data series that achieved stability by 20 observations

increased, up to around 20% for Kaz10, around 40% for Kaz15, and around 60% for the

GSFull algorithm. The GSFinal found a larger number of baselines stable by 20
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observations, about 50% when µ = 5 and 95% when µ = 25. The increasing trend

observed in the Kaz10, Kaz15, and GSFinal algorithms continued all the way up to 100

observations, with all or nearly all of the baselines eventually reaching stability in the

case of the GSFinal algorithm. The cumulative percentage of baselines found stable by

the GSFull algorithm was essentially unchanged after 20 observations, with most

baseline ending at three observations (the first possible observation for stability) or five

observations (the first time a baseline with a contra-therapeutic trend can be found

stable). The GSAbs and GSRel algorithms found nearly all of the baselines stable by 20

observations, with the rest achieving stability by 30 observations. The VVA algorithm

found all of the baselines stable by 20 observations.

The relationship between the mean level and stability is likely a consequence of the

fact that for the Poisson and gamma point process data, the overall spread of the data

(the standard deviation) increases proportionally to the square root of the mean. As the

mean increases, the rules based on a bandwidth that is proportional to the mean

represent less restrictive conditions for the data to meet.

Figure 3 displays the cumulative percentage of stable baselines at a given

observation length for a generating mean of µ = 15 across varying degrees of

autocorrelation. Increasing autocorrelation led to more baselines being found stable, and

those baselines that were stable were also shorter in length. The only exception was the

VVA algorithm, where increasing autocorrelation led to slightly longer baselines.

For the gamma point process model, the influence of different values of the true

mean followed the same pattern as with the auto-correlated Poisson model. We

therefore focused on the influence of varying degrees of dispersion. Figure 4 displays the

cumulative percentage of stable baselines at a given observation length for gamma point

process outcomes with a mean of µ = 15 across varying degrees of dispersion. For

comparison, we have also included the results from the Poisson distribution (i.e., with

unit dispersion) and zero auto-correlation.
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For the Kaz10, Kaz15, and GSFull algorithms, the degree of dispersion strongly

affected the chance that the data series achieved stability. For instance, when the

generating mean was µ = 15 and the overdispersion = 2.5, only about 5% of baselines

were considered stable by 20 observations by the Kaz10 algorithm, whereas more than

30% of the baselines in the heavily underdispersed case (dispersion = 0.4) were

considered stable at the same mean by the same algorithm. In general, outcomes with

lower variability were more likely to be seen as stable, when holding the value for the

mean constant. The only exception was the VVA, where the influence of over- and

under-dispersion was not as strong or consistent. As with the Poisson distribution, data

series simulated from a gamma point process always achieved stability well before 100

observations according to the GSAbs, GSRel, and VVA algorithms.

Figure 5 displays the cumulative percentage of stable baselines at a given

observation length for normally-distributed baselines across varying levels of

autocorrelation when σ2 = 1. While autocorrelation does have a small impact on the

proportion of cases that reach stability for the Kaz10, Kaz15, GSFull, and GSFinal

algorithms, the differences were only noticeable in the case of the GSFull algorithm,

where the relationship between autocorrelation and stability was consistent with the

Poisson results.

Figure 6 displays the cumulative percentage of stable baselines at a given

observation length for normally-distributed baselines across varying levels of the

variance when the data are independently distributed. The effect of increasing variance

while holding the mean stable is similar to the impact of the increasing mean in both of

the Poisson cases. As the variability of the data increases, the percentage of baselines

that ever reach stability decreases (with the exception of the VVA). This is unsurprising,

all of the methods other than the VVA are based on the bandwidth around the mean or

median, so reducing the variability of the data will increase the number of stable

baselines.
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One notable aspect of these results is that, across any of the conditions examined,

the GSFull algorithm never determined that a baseline was stable after five observations.

This may be an indication that the GSFull algorithm is overly restrictive, possibly due

to a combination of a bandwidth that is too narrow and an algorithm that considers all

of the observations in the series. In contrast, several of the other algorithms consider

only a subset of the observations (e.g., the most recent three observations) when

determining stability.

Bias of the sample mean

As we noted previously, biases in the baseline sample mean have potential to bias

treatment effect estimates from statistical models. Thus, both applied researchers and

researchers interested in the secondary analysis of SCED data should be aware of the

potential consequences of using response-guided designs for estimation of baseline mean

levels.

Figure 7 displays the relative bias of the baseline mean for the Poisson-distributed

outcomes that reached stability within 100 observations. The relative bias of the

baseline mean was less than 3% for most of the algorithms and under most conditions.

The one exception was the GSFull algorithm, where the sample mean had a relative bias

of 5% or more when the generating mean was small (µ = 5) and there was positive

autocorrelation in the errors. The GSFinal algorithm also led to small biases (of less

than 3%) when the generating mean was small (µ = 5). The GSFull algorithm is more

restrictive than other algorithms, considering each observation as a part of stability, as

opposed to a subset of the observations. It is likely that only baselines with a large

sample mean (and consequently larger bandwidth) with respect to the generating

conditions were able to meet the criteria of the algorithm. While the GSFinal algorithm

was not notably more restrictive than the Kaz10 or Kaz15 algorithms, it did find a

larger number of very short baselines stable. Similar to the GSFull algorithm, these

shorter baselines likely had larger means to meet the criteria of the algorithm.
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Figure 8 displays the relative bias of the sample mean for stable data series

simulated from the gamma point process model that reached stability within 100

observations. As with the Poisson model, baseline biases were generally less than 3%,

although there were two exceptions. First, the Kaz10 algorithm caused negative bias of

approximately 5% when the generating mean was small (µ = 5) and the data were

highly overdispersed (2.5). In the case of overdispersed data with a small mean, these

baselines likely had observations with very low counts that the algorithm found stable.

Second, the GSFull algorithm created positive bias when the mean was small (µ = 5)

and there was any overdispersion, in which case the baseline mean was overestimated by

as much as 10%. This behavior was likely due to the same requirement for a large

sample mean in order for the bandwidth to be large enough for the baseline to meet the

criteria of the algorithm.

Figure 9 displays the relative bias of the baseline mean for normally-distributed

baselines that reached stability within 100 observations. The biases here were relatively

small, except for the combination of the GSFull algorithm and the largest value of the

variance (σ2 = 2.25), likely for the same reasons as noted in the Poisson-distributed

baselines. In nearly all of these cases, the variance of the outcome with respect to the

generating mean was much smaller than in the Poisson or gamma point process case,

which may explain why there were so few cases with noticeable bias of the baseline

means.

Bias of the sample variance

Perhaps even more important than bias in the baseline sample mean is a bias in

the baseline sample variance. Biases in the sample variance have the potential to impact

standard errors and weights for regression-based models, as well as the magnitude of any

effect size that is standardized by the sample variance, such as the within-case

standardized mean difference.

Figure 10 displays the relative bias of the baseline variance for Poisson-distributed
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outcomes that reached stability within 100 observations. In nearly all cases, using a

response-guided algorithm led to an underestimate in the variance of the baselines. The

Kaz10, Kaz15, and GSFinal algorithms averaged around a 20% underestimate of the

variance, and the GSFull algorithm averaged around a 60% underestimate of the

variance. Due to the restrictive nature of the GSFull algorithm, it required baselines

with low sample variances in addition to high sample means in order to meet the criteria

of the algorithm. The GSAbs and GSRel algorithms produced less extreme biases, with

underestimates in the 5-10% range when there is no autocorrelation in the errors.

Only one algorithm, the VVA, produced unbiased sample variances when there

was no autocorrelation between the observations. This is likely because the VVA

stability criteria are defined relative to the sample standard deviation, rather than the

sample mean. It makes no judgments about the degree of variability, and only focuses

on ensuring there is no therapeutic trend or sudden changes in level.

Across all algorithms, higher autocorrelation led to larger, negative biases in the

sample variance. The connection between autocorrelation and bias of the sample

variance arises for two reasons. The first is that variance estimates from small samples

of autocorrelated data are negatively biased, and many of these baselines are quite

short—less than ten observations. The second reason has to do with the spread of the

variance estimates and their interaction with the algorithms that use a bandwidth. Let

us denote the sample variance as S2. When autocorrelation is present, there is more

variability in the value S2 across samples than when observations are independent. This

means that samples with both larger and smaller variances are more likely than in the

independent case. Early on, the baselines with small variances will be considered stable

by algorithms using a bandwidth. Baselines with larger variances will not be considered

stable by algorithms using a bandwidth and will continue to accrue observations. As the

number of observations in a baseline increases, the sample variance will typically become

less variable, so that the baseline will eventually be deemed stable by algorithms that
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use a bandwidth. Thus, for the algorithms defined in terms of a bandwidth, baselines

with a very large sample variance are censored, which means that only samples with

average variances or smaller-than-average variances are ever considered stable. As a

consequence, the average variance of the stable baselines is smaller than the generating

model.

Figure 11 displays the relative bias of the baseline sample variance for data series

simulated from the gamma point process model that reached stability within 100

observations. Once again, the VVA algorithm produced data series with

close-to-unbiased sample variances. The baselines found stable by the GSAbs and

GSRel algorithms had variances that were underestimated by 5 to 10%. The Kaz10,

Kaz15, and GSFinal algorithms led to underestimated variances of about 20%. For all

these algorithms, the degree of bias was not strongly related to the level of dispersion

used to generate the data series. In contrast, the GSFull algorithm led to large

underestimated variance, ranging from 40 to 70%, with the largest underestimates

occurring when the distribution was more over-dispersed, likely for the same reasons we

discussed in the Poisson case.

Figure 12 displays the relative bias of the baseline variance for

normally-distributed baselines that reached stability within 100 observations. Just as

with the other models, the VVA had approximately unbiased variances when the data

were independent. The GSAbs algorithm led to variances that were underestimated by

about 5% when the observations were independent. In most other cases, the variances

were underestimated, with negative biases of as much as 60% with the GSFull algorithm

and the largest variance condition. Stronger autocorrelation led to larger negative bias

of the sample variance, consistent with the pattern observed in the auto-correlated

poisson model. Larger generating variances led to more pronounced, negative biases in

the sample variance.

The one notable difference with the normal model is the Kaz10 and Kaz15
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algorithms, where the smallest variance condition had the largest negative biases. When

the data are independent, the differences are negligible. However, as autocorrelation

increases, the relative bias becomes notably larger. This is likely related to the fact that

negative biases of small magnitudes have large values when scaled by parameters of less

than 1. For instance, a negative absolute bias of only .025 becomes a relative bias of

10% when the parameter it is being scaled by is 0.25. This, combined with the tendency

of autocorrelation to produce underestimates of the variance for small samples lead to

larger underestimates for those two algorithms when the variance was small and the

autocorrelation larger.

Discussion

Looking across simulation conditions, the results indicated several general trends.

First, higher generating means (for the Poisson conditions) or lower variances (for the

normal-errors conditions) and larger autocorrelation led to shorter baselines and more

baselines being found stable within 100 observations. In almost all cases, the estimated

baseline mean was approximately unbiased for data series determined to be stable. In

contrast, the sample variances were almost always underestimates of the true degree of

variance in the baseline outcomes. The only algorithm whose behavior was inconsistent

with these general patterns was the VVA.

The VVA works very differently than the other response-guided design algorithms.

It simply uses the baseline sample standard deviation as a benchmark to ensure that

there are no therapeutic trends in the data. The larger the sample standard deviation of

the data, the less restrictive the VVA becomes, irrespective of the sample mean. The

only reason that larger means led to a higher number of baselines being found stable was

that, for several of the models, increasing the mean level also led to a corresponding

increase in the standard deviation of the data. This also explains why increasing

autocorrelation decreased the average length of the baselines for this algorithm.

Increased autocorrelation caused a slight, negative bias in the variance when there were
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a small number of observations, which meant that the VVA was more restrictive in these

cases.

Across all of the data generating models we examined, the Kaz10, Kaz15, and

GSFull algorithms rarely allowed for a baseline reach stability. For Kaz10 and Kaz 15,

the baselines that are stable have lengths that are relatively evenly distributed across

the full range from 3 to 100 observations. In contrast, the baselines from Pustejovsky et

al. (2019) look more like the data from simulated SCEDs in which the GSFinal, GSAbs,

GSRel, and the VVA algorithms were applied, with most baselines ending within 5-10

observations and a long tail of a few long data series. When we consider how likely the

algorithms are to have been used in practice, our conclusions are necessarily tentative.

This is particularly true of the algorithms based on Gast and Spriggs (2014), as these

were not explicitly described as response-guided criteria. If the assumptions underlying

our data generating models are unrealistic, these results may be incorrect. Assuming

that the data generating models are realistic, it seems unlikely that the Kaz10, Kaz15,

and GSFull algorithms are being used in practice in the way that we have

operationalized them. Although we cannot say with certainty that the GSFinal, GSAbs,

GSRel, and the VVA algorithms represent actual practice, they do represent more

plausible approximations for how response-guided design might be used in real research.

Implications for methodological research

Findings from this simulation study have several implications for further research

on and development of methods for statistical analysis of SCED data. First and

foremost, there is a need for a more detailed understanding of the stability criteria that

are actually used in practice. To address this need, it would be useful to conduct

systematic reviews, interviews, or surveys with applied researchers to learn about

current research practices related to response-guided design.

Second, future methodological studies should consider the implications of

response-guided designs for the properties of existing and new statistical methods. As
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we have noted, most existing statistical procedures for SCED data assume (perhaps

implicitly) that phase lengths are fixed and unrelated to the data pattern during the

baseline phase. Thus, there is a need to study whether use of response-guided designs

may lead to bias in effect size estimation (Pustejovsky, 2019), multi-level modeling

methods (such as those proposed by Van den Noortgate & Onghena, 2003), and

statistical procedures that may be developed in the future. Similarly, non-overlap

methods such as the percentage of non-overlapping data (Schlosser, Lee, & Wendt, 2008;

Scruggs, Mastropieri, & Casto, 1987) or non-overlap of all pairs (Parker & Vannest,

2009) might be affected by the use of response-guided designs, due to their sensitivity to

other operational details such as the number of observations in the baseline or treatment

phases (Allison & Gorman, 1994).

Third, and more broadly, methodologists interested in SCED research should

carefully consider their data generating model when simulating SCED data. The

mean-variance relationship of our data generating models had important implications

for stability. Although the normally-distributed data generally performed similarly to

the Poisson and gamma point process data in the simulations that we presented, we had

to set our generating conditions carefully in order to yield meaningful results.

Implications for applied research

Our simulation results suggest that use of certain response-guided designs may

have consequences for the inferences drawn from SCED data. Further, not all

response-guided algorithms behaved identically. The specific criteria used to assess

stability and determine when to transition between phases mattered for the properties of

estimates derived from the baseline data. Given the need to better understand how

response-guided designs are used in practice, researchers should take care to report the

precise algorithm or decision rule that they used in conducting an SCED. Describing

their decision rules to the precise degree we have outlined in this paper might be difficult

in practice. Textbook chapters such as Barton et al. (2018) provide an example for the
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level of detail needed to operationalize response-guided methods. To facilitate greater

transparency and replicability, reviewers and editors of journals that publish SCED

research should emphasize more detailed reporting of response-guided design practices.

As we have noted, many existing analysis methods for SCED data that are

intended to complement or supplement visual analysis assume (perhaps implicitly) that

phase lengths are fixed and unrelated to the data pattern during the baseline phase.

Baselines with reduced variability may have underestimated standard errors with

increased Type I error as a consequence, and biased weights in the context of

meta-analysis. Researchers might consider specifying a suitable number of observations

upon which to end the observation phase. With precise operational definitions, it might

even be possible for methodologists and applied researchers to work together to create

decisions rules around stability that help meet the goals of response-guided practices

(i.e., aiding visual analysis) while also minimizing potential consequences such as the

biases we have described.

Limitations and future directions

Moving forward, researchers might look outside education research for ways to

accommodate response-guided designs in statistical models. One area of active

development is adaptive clinical trials, which are used to evaluate medical interventions.

Adaptive designs allow for adjusting the design of a trial, such as the probability that a

new participant receives a novel intervention, while the study is underway, using data

gathered over the study’s course (Bhatt & Mehta, 2016). Methodological developments

in this area may be relevant to the challenges of analyzing response-guided SCEDs in

education and communication sciences and disorders.

The algorithms we have described and investigated in this simulation study

represent an initial attempt to emulate the practice of single-case researchers who use

response-guided designs. However, we have studied only a limited set of algorithms, and

it is quite likely that we have not captured the full range of how SCED researchers
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assess baseline stability in practice. As primary researchers describe their methods more

systematically and precisely, we can refine our algorithms and continue to study the

impact of response-guided design practices.

A further limitation of this simulation study arises from looking only at selected

data generating models. The results of this study are only meaningful insofar as the

models that we have studied are reasonable approximations for the features of real data

collected in practice. There are other potential data generating models for SCEDs, such

as the negative binomial for counts, or the binomial and beta-binomial for proportions.

These models exhibit different mean-variance relationships than the models we used in

this study, and so the impact of response-guided methods on data generated from these

alternative models might differ in important ways. Future research should examine the

impact of additional data generating models with differing mean-variance relationships

to understand how they interact with response-guided designs.

In addition to other mean-variance relationships, future research should examine

data which are not temporally stable, where features of the data series such as the level

or variability across time. As we noted in a previous section, this study is unable to

address questions about the utility of these algorithms for diagnosing unstable data. By

applying these algorithms to data series with systematic time trends, it would be

possible to characterize how well these algorithms work to diagnose certain kinds of

instability and to investigate the consequences of response-guided designs for other

features of baseline data series, such as trend estimates.

Even based on the limited set of data generating models examined here, our

findings indicate that there may be biases present in some SCED studies that used some

form of response-guided practices. The fact that variance estimates from

response-guided designs can be substantially biased has implications for treatment effect

estimates commonly used by SCED researchers. Effect sizes such as the within-case

standardized mean difference (Gingerich, 1984) or the non-overlap of all pairs (Parker &
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Vannest, 2009) are defined in terms of the degree of variation in the baseline data series.

Consequently, we suspect that estimates of these effect sizes may be inflated by

response-guided design practices. Future work should investigate how response-guided

design practices, applied to data from different data generating models, may be

systematically biasing commonly used effect sizes for SCEDs.

A final limitation of this study is that we only considered algorithms for assessing

stability of a single data series. In multiple-baseline designs, stability judgments may be

made on the basis of multiple series simultaneously. Hybrid designs, such as a

multiple-baseline with reversals, could complicate the impact of response-guided design

practices even further. Likewise, if researchers collect more than one outcome measure

in a study, then they will need to make stability judgments about one or more

potentially correlated outcomes. Researchers’ use of response-guided designs might also

be affected by external constraints, such as school schedules. Researchers might face

time constraints that require shifting criteria as the number of observations increases.

They may have expectations about the impact of the interventions, which could

influence the degree of variability or trend that is acceptable in the baseline phase.

Future research should consider how the complex designs present in modern SCED

studies (Moeyaert, Akhmedjanova, Ferron, Beretvas, & den Noortgate, 2020) and the

response-guided practices used by applied researchers may interact to impact the

features of SCED data and results of statistical analyses. Applied researchers can aid

such investigations by carefully and specifically articulating the response-guided criteria

that they use in practice.
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Table 1

Simulation Conditions

Poisson Data Conditions

Mean level (µ) 5, 15, 25

Autocorrelation (φ) 0, 0.2, 0.4

Gamma Point Process Data Conditions

Mean level (µ) 5, 15, 25

Dispersion (κ) 5/2, 3/2, 2/3, 2/5

Normally-distributed Data Conditions

Mean level (µ) 5

Variance (σ2) 0.25, 1, 2.25

Autocorrelation (φ) 0, 0.2, 0.4
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Figure 1 . Width of the stability envelope w around a set of observations with a median

value of m̃b = 20. The dotted line represents the value of the median, and the dashed

lines represent the bounds of the stability envelope when there are n observations along

the x-axis.
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Figure 2 . Cumulative percentage of stable baselines at a given number of observations

for the independent Poisson case, up to 20 observations.
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Figure 3 . Cumulative percentage of stable baselines at a given number of observations

for the Poisson case with mean µ = 15 across different levels of autocorrelation, up to 20

observations.
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Figure 4 . Cumulative percentage of stable baselines at a given number of observations

for the gamma point process case with mean µ = 15 across different degrees of

dispersion, up to 20 observations.
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Figure 5 . The proportion of normally-distributed replicates designated as a stable

baseline across different degrees of autocorrelation when σ2 = 1, up to 20 observations.
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Figure 6 . The proportion of normally-distributed replicates designated as a stable

baseline across different values of the variance when φ = 0, up to 20 observations.
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Figure 7 . Relative bias of the baseline mean for stable, Poisson-distributed baselines by

algorithm and degree of autocorrelation. The dashed lines correspond to relative biases

of 5%.
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Figure 8 . Relative bias of the baseline mean for stable, gamma point process baselines

by algorithm and degree of dispersion. The dashed lines correspond to relative biases of

5%.
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Figure 9 . Relative bias of the baseline mean for stable, normally-distributed baselines

by algorithm and degree of autocorrelation. The dashed lines correspond to relative

biases of 5%.
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Figure 10 . Relative bias of the baseline variance for stable, Poisson-distributed baselines

by algorithm and degree of autocorrelation. The dashed lines correspond to relative

biases of 5%.
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Figure 11 . Relative bias of the baseline variance for stable data series following the

gamma point process model, by algorithm and degree of dispersion. The dashed lines

correspond to relative biases of 5%.
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Figure 12 . Relative bias of the baseline variance for stable, normally-distributed

baselines by algorithm and degree of autocorrelation. The dashed lines correspond to

relative biases of 5%.


